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FOREWORD 

This report consists of the second phase of an analytical program 

to provide fundamental solutions to the non-uniform flow fields of wing- 

propeller aerodynamics,,    This program was originated by Dr. Scott 

Rethorst as an extension of his basic lifting surface solution obtained in 

an earlier study conducted at the Olifornia Institute of Technology,1 

The program was formulated so that the effects of primary variables 

such as wing plan form were first determined«    The analysis is then 

extended in order of increasing complexity to enhance its generality and 

to encompass secondary features.    Each phase of the program establishes 

the foundation for the succeeding phases in an orderly growth pattern. 

The following four phases constitute the basic analytical portion of this 

program: 

1.    Single Jet. Theory - The Rethorst analysis of Ref.  1 

was applied to an extensive systematic spectrum of 43 7 wings.    Optimum 

(2) finite wing planforms were determined, 

Z,    Multiple Jet Theory - The single jet theory is further 

generalized and applied to the case of multiple jets»    The effect of slip- 

stream rotation is also included,    (Present Report). 

3, High Angle of Attack Theory -   The generalized theory 

is applied to analyses of (1) wings located at various heights in the jet, 

(2) highly cambered wings as used in deflected slipstream V/STOL con- 

cepts, and (3) tilt wing configurations where the jet is at an angle to the 

r . n        (3) free stream flow. 

4. Separated Flow Theory - Hydrodynamic cavitation theory 



is used to determine the separated flow field incurred during the transi- 

tional flight of V/STOL aircraft. ^ 

The original Rethorst analysis of a wing extending through a single 

jet as used in Phase 1 employs an infinitesimal vortex element,  which 

early in the analysis was integrated over a finite span element.    The 

wing was then represented by a series of such finite spanwise horseshoe 

vortex elements. 

Each such horseshoe vortex element was then split into components 

which were even and odd with respect to the direction of flow.    The flow 

field due to the two dimensional even component was found in a straight- 

forward algebraic manner.    The flow field due to the three dimensional 

odd component is quite complex, involving infinite sums of infinite integrals 

of Bessel functions.    Electronic data processing equipment is necessary 

for evaluation of these quadratures. 

The present paper,  in extending the Rethorst analysis to multiple 

jets, introduces four further significant refinements.    First, the infinitesi- 

mal vortex elements are retained throughout the analysis, delaying the 

integration over the span until a final step.    This technique simplifies 

the analysis and improves the accuracy of the results.    Second, the sym- 

metry restrictions have been removed so that more generalized geometries 

may be analyzed.    Third,  the odd component has been further partitioned 

into a simple algebraic component plus a complex remainder containing 

all of the Bessel function terms.    If this remainder can be bounded and 

shown to be small enough to be disregarded,  even in certain special cases, 

a major saving in computation will be achieved.    Fourth,  the effects of 

slipstream rotation have been included as a super-imposed element. 



SUMMARY 

The basic Relhorst lifting surface solution of a wing extending 

through a single jet was generalized to enhance its applicability to the 

solution of many general and secondary problems concerned with the 

non-uniform aerodynamics of wing-propeller interaction.    The general- 

ization is first developed in detail in terms of single jet theory.    Then 

it is applied to multi-jet arrangements. 

Several significant refinements to the original Rethorst theory 

are introduced.    The wing is represented by a distribution of infinitesi- 

mal vortex elements instead of a large but finite number of horseshoe 

vortices.    Certain symmetry restrictions are removed and the effect 

of slipstream rotation is included. 

The spanwise lift distribution of an example multi-jet arrange- 

ment was determined.    Large increases in lift inboard and within the 

jets were obtained when the free stream velocity was small compared 

to the jet velocity.    A lesser but significant increase occurred outboard 

of the jets. 

This large lift magnification offers the potential of large im- 

provements in STOL capabilities and warrants a further computational 

effort which is presently being conducted. 
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I.    INTRODUCTION 

The problem of the spanwise lift distribution on a wing of finite 

aspect-ratio extending through a central jet slipstream has been investi- 

(5) gated by several authors.    Koning^     first treated this problem,  using the 

lifting line theory together with certain simplifying assumptions.    In 

Koning's work,  the slipstream is taken to be a circular jet of air moving 

with a uniform velocity parallel to the main stream.    The distortion of 

the slipstream due to the presence of the wing is assumsd to be small 

so that the boundary conditions on the jet boundary may be applied,  by 

linearization,   at its undisturbed position.    Furthermore,  the difference 

between the jet velocity and the main flow velocity is assumed small; 

this limitation was introduced primarily to simplify the method of 

calculation used by Koning.    Recently Koning's theory has been extended 

to render results valid for all jet velocities (with the other original 

assumptions retained) by Graham, Lagerstrom, Lieber and Beane.    . 

The lift distribution along a wing of finite span with a central 

jet has been calculated by Squire and Chester     , using the lifting line 

theory together with a rather elaborate expansion of the circulation 

distribution along the wing0    Although the lifting line approximation 

well represents a wing of high aspect-ratio in a uniform main flow, 

the same approximation adapted to the present problem will further 

require that the slipstream diameter be large compared with the wing 

chord.    In practice, however, the slipstream diameter and the chord 

are usually of the same order in magnitude.    The applicability of the 

lifting line theory is therefore not well established. 



On the other hand,  if the slipstream diameter is small compared 

with the wing chord,  the lift increase due to the jet effect is produced 

mainly over a low aspect-ratio surface,  namely the portion of the wing 

in the jet and its immediate neighborhood.    This special case has been 

treated by applying the slender body theory in Ref.  6,    In this theory the 

basic velocity potential   (/)_   of the wing alone without the jet is considered 

as known and the jet perturbation potential   A<j) = (j) - $      is assumed to 

satisfy the slender body approximations; the problem of   A^)   is then 

solved with the effect of finite aspect-ratio on   A0   neglected. 

Judging from the different assumptions inherent in these two 

theories, it is expected that the lifting line theory will be valid for large 

values of the ratio of jet diameter to wing chord,  whereas the slender 

body theory will be valid for small values of this ratio.    In order to as- 

certain the range of validity of these two theories,  their results have 

been compared in Ref,  6 for a particular example (a wing with sinusoidally 

varying incidence along the span,   extending through a plane-sided free 

jet of finite width and infinite height) with the result of a third method, 

namely the approximate lifting surface theory of Weissinger     . 

The comparison shows that,  at least for this particular case, the 

slender body theory is in good agreement with the lifting surface theory 

when the jet v/idth is less than the wing chord«    The lifting line theory 

is inadequate in this  range of width-to-chord ratio,  but in the limit tends 

to the Weissinger theory for large values of this ratio (about 10 or larger). 

While this finding indicates the range of validity of the two limiting theories 

in this special case,  their respective ranges of validity in the general 



case,  however,  are not definitely established, as indicated by the com- 

parison (ßiven below) of their results with the existing experimental data. 

For the general case it seems evident that some kind of lifting 

surface theory would be required to describe properly the actual flow. 

Based on this point of view,  Rethorst      treated the original Koning 

problem by using the Weissinger approximation.    In this analysis,  the 

wing is represented by a large number of horseshoe vortices,  which 

are obtained by integration of an infinitesimal vortex over a small but 

finite span element.    The problem is then solved by the finite step method. 

To avoid the difficulties encountered in evaluating the convergence of the 

solution at the jet boundary,  no vortex is chosen to stride across the 

jet boundary.    This arrangement simplifies the boundary condition on 

the downwash at the intersection of the  jet boundary and the wing.    The 

lift distribution given by Rethorst's theory is shown to lie between the 

two limiting theories     „    This theory of Rethorst has been subsequently 

applied to compute various flow quantities for a wide range of the velocity- 

ratio (main stream velocity to jet velocity) and the ratio of jet diameter 

to chord;   the results are reported in Ref.  Z. 

There are only a few experimental results on this slipstream 

(9) 
problem.    A series of experiments were conducted by Smelt and Davies     , 

using a rectangular wing held at an incidence of 6. 6 degrees,  and with 

the propeller axis parallel to the main flow.    Only the aerodynamic forces 

on the wing itself were measured.    Compared with this set of experiments, 

the lift increment predicted by the slender body theory is about 30% lower 

than the experimental value     ,  whereas the lift increment given by the 



lifting line theory is more than double the experimental data. 

In a set of experiments carried out by Stuper      , the spanwise 

lift distribution on a rectangular wing   was  measured at two angles of 

attack,    A specially designed propeller was used to produce a jet with 

nearly uniform velocity distribution and without rotation.    A comparison 

shows that the experimental lift distribution of Stuper lies between the 

two limiting theories,  whereas Rethorst's theory is found in substantial 

agreement with the experiment within the jet.    Outside the jet(  the 

correlation is obscured by the use of an upstream duct in Stuper's experi 

ment. 

Another experimental study of this problem was made recently 

by Brenckman      ,    It was found that within a range of moderate wing 

incidences, a substantial part of the lift increment produced by the slip- 

stream is attributed to a destalling or boundary-layer-control effect. 

With this part of the lift increment deducted,  the remaining part was 

fou.ia in good agreement with the slender body theory.    The slipstream 

velocity profile (deviation from a uniform distribution),  rotation, and 

deformation (from its original circular shape) were claimed to be of 

secondary importance.    However, no apparent attempt was mentioned 

in Brenckman's investigation to examine the case when the angle of 

attack is so small that the destalling effect is practically absent,  and 

to examine the other ranges of the chord-to-diameter ratio.    Thus it 

seems that further experimental investigation of these points would be 

required in order to provide a more sound basis for comparison between 

the different theories and experiments. 

(1) 



More recently an extensive experimental investigation of the 

slipstream problem was undertaken at Princeton University, Department 

of Aeronautical Engineering,    The first report of this work is on finite 

(12) 
spans        and produced experimental data that was in close agreement 

with the Rethorst theory, 

A further recent Princeton report on this program dealt with 
(13) 

infinite aspect ratio wings       ,    The Rethorst formulation again proved 

to yield the best correlation with experimental results. 

This Princeton program provides substantial experimental evi- 

dence of the validity of the present theoretical program,  particularly 

the first phase based on Rethorst's work.    This favorable correlation 

lends encouragement to the present generalization of this initial effort. 

The present study is concerned mainly with the generalization 

of the Rethorst lifting surface theory so that the analysis may be more 

readily applied to an extensive set of general problems,   such as multiple 

jets,   slipstream rotation,  ground effect,  and the optimum wing form 

for total lift.    The first two problems are solved in the present paper. 

Because the Weissinger method is less time-consuming than other 

more elaborate lifting surface theories,  it is adopted here as a first ap- 

proximation to the lifting surface theory.    In order to simplify the analysis 

and to improve the accuracy of the results,  the wing is represented by 

a piece-wise continuous distribution of circulation   T, which may admit 

a step-jump only at the jet boundaries.    The circulation distribution   T 

is further expressed by different Fourier series in different regions 

(inside and outside the jets) over the wing.    With this expansion of   T  the 



condition that the downwash at the jet boundaries must be bounded can 

easily be enforced.    The first few Fourier coefficients are determined 

by applying a number of boundary conditions at approximate points on 

the wing. 

The case of a single jet is first considered in detail; the analysis 

is then generalized to the case of multiple jets.    The effect of the slip- 

stream rotation is accounted for in an approximate manner. 



II.    ANALYSIS 

A.    GENERAL FORMULATION 

In this analytical treatment of the effect of a number of slip- 

streams on the spanwise  lift distribution over a wing,   the following 

simplifying assumptions are introduced.    Each slipstream is taken to 

be a jet of air which has a circular cross section and has its central 

axis parallel to the main stream surrounding the jets.      To begin with, 

the slipstreams are assumed to have no rotation about their axes; the 

effect of small slipstream rotation will be approximately estimated 

later in the analysis.    Thus the slipstream velocity and the main stream 

velocity are assumed to be originally uniform and constant,   equal to   V. 

and   V     respectively.    In this analysis the quantity   (V.-V  )/(V.+V  ) 

need not be limited to be small.    When   V. » V  ,  the effect of the slip- 
J 0' ^ 

streams becomes predominant; consequently the assumption that the 

slipstreams are parallel to the main stream becomes less important 

and may thereby be relaxed to some extent.    It may also be noted that 

for   V". » V ,  the mixing region at the jet boundary due to the viscous 

effect will become appreciable; this real fluid effect,  however,   will be 

neglected.    It should be mentioned that,   as pointed out by Brenckman      , 

a substantial part of the lift increment at moderate incident angles pro- 

duced by the slipstream is attributed to a "destalling" effect which reduces 

the flow separation on account of the high velocity slipstream.    This point 

of view would seem, to require some kind of new or modified analysis, 

presumably with the use of the free streamline theory to represent the 

separated flow.    Within the present framework,   however,   the flow is 



assumed to be free from separation 

The flow is assumed to be incompressible and nonviscous, hence it pos- 

sesses a velocity potential inside and outside the jet,  though the potential 

need not be continuous at the jet boundary.    The jet boundary may be regarded 

as a vortex sheet separating the inside and outside flow.    The only other 

singularities are the vortex elements representing the wing and the trail- 

ing vortex sheet shed from the wing.   The disturbances produced by the 

wing are assumed to fall off far away from the wing except,   of course, 

along its trailing vortex sheet. 

Before the analysis is extended to the case of multiple jets,  we 

consider first the case of a single circular jet,   with its radius normalized 

to unity for simplicity.    The jet axis is taken to be the   x-axis,   directed 

along the main flow and centered at the wing chord.    The wing extends 

through the jet,   spanning from   y = -b,   to   y = +b;,   (b,, b? > 1,   see Fig.  1). 

The   z-axis is taken to point upward.    The ratio between the main stream 

velocity   V     and the jet velocity   V.   will be denoted by 

(a - Yo/yy   0 < H^ i • (i) 

The perturbation velocity potential outside and inside the jet will be de- 

noted by   (p     and   (p.   so that the total velocity will be respectively 

% = VT + grad (po,      q, = vT + grad ^ (2) 

where   i    is a unit vector along the   x-axis.    In their respective flow 

regions ßj     and   (p.   satisfy the Laplace equation 
J 

VZ(p0 = 0 , vVj = 0 . (3) 

The distortion of the slipstream by the wing is assumed small so that 



by linearization,  the conditions on the jet boundary may be applied on 

the original circular free boundary.    There are two boundary conditions 

at the jet boundary.    One of them is dynamic in nature,   stating that the 

(5) pressure must be continuous at the jet boundary; that ia, v   ' 

(pj = \J.(p0       on     r = (y + z   ) /    = 1   . (4) 

The other condition,  kinematic in nature,  expresses that the inside and 

outside flow must be tangential to each other at the boundary,  that is, 

d(po/dr = [idcpjBr       on      r = 1     . (5) 

The boundary conditions on the   trailing vortex sheet of the wing will be 

described below (immediately after Eq.   6),  and the boundary condition 

on the lifting surface representing the wing will be given later in this 

analysis (see Section B4), 

In order to generalize the analysis and to improve its accuracy 

for subsequent numerical computations,  the wing will be represented by 

a distribution of infinitesirrial vortex elements instead of a number of 

finite horseshoe vortices as in Ref,  1.    Let us first consider an infinitesi- 

mal element of bound vortex of strength   r('n)6r|   centered at   x = 0, y = r|, 

z = 0,  and extending over a line element   6TI   along the   y-axis,  the free 

stream being everywhere uniform,  of velocity   V   in the positive   x-direc- 

tion.    The trailing vortex sheet of this bound vortex element lies approxi- 

mately in the region   x > 0,  r| - 6rj/2 < y < r| + 6r]/2,    z = 0.    The solution 

of this problem is well known (e, g,   see Ref,  14); it may be expressed as 

5^ = 6^+ b(p2 = jf r(T|)5Ti[ F^y-ri, z) + F2(x, y-ri, z)], (6a) 



where 

F^y.z) = -^—^ (6b) 
y  + z 

F (x, y, z) = z        —x dI     i 3/2 
^ J0   (e  +y<i+z^)V^ 

y + z      (x  + y  + z   ) ' 
(6c) 

This solution is seen to satisfy the Laplace equation and to have the fol- 

lowing properties: 

1. Across the trailing vortex sheet   iy-T|l < br\/Z, 

x > 0,  z = 0,  the potential   by   has a jump 

6c/}(x,y, 0+) - 6(/)(x,y,0-) = r(r|)6Ti, and   6(p(x, yf0) = 0 

elsewhere. 

2. Across the trailing vortex sheet   bcp  ,  bcp     are 

continuous and   bcf)     may be discontinuous, but 

2 
[bcp  )      is continuous, 

2       2        2 
3. 6(p—-Oasx    +y    +z— oo except over the 

vortex sheet. 

Here   bw   is conveniently decomposed into two parts,    S^,   and 

bipj.    The part   bcp-,   is independent of   x,   and will be called the two-di- 

mensional part of the potential.    The part   bq^   is a function which is 

odd in   x   and   z,   but even in    (y-f)),  and will be called the three-dimen- 

sional part of the potential.    The whole part   6^?   may be regarded as the 

fundamental solution of a vortex element,  and is useful in constructing 

the solution of more complicated boundary value problems.    By using 

this fundamental solution,  the velocity field generated by a distribution 

10 



of circulation   r(y) along the wing span   (-b. < y < bp)   under the influence 

of a single jet can readily be calculated; this is given in the next section. 

This result will be further generalized to the case of multiple jets. 

Finally,  the approximate lifting surface theory of Weissinger will be 

applied by taking one or more of such lifting lines appropriately dis- 

tributed over the wing surface to represent the wing together with ap- 

propriate boundary conditions to ensure that the wing remains a rigid 

surface. 

B.    SINGLE JET THEORY 

1,    The Velocity Potential of a Lifting Line Extending through a 

Single Jet 

We shall first derive from the above fundamental solution Eq.   (6) 

the velocity potential of an infinitesimal bound vortex of strength   r{Ti)6Ti 

placed at   (0, r\, 0) in the presence of a single jet with its boundary at 

r = 1.    This solution may further be regarded as the fundamental solution, 

or the Green's function,   of the wing-jet interference problem.    It turns 

out that the determination of this Green's function depends on whether 

the vortex element is located inside or outside the jet slipstream.   The 

velocity potential of a whole lifting line extending through the jet can 

then be obtained by superposition of this Green's function.    We shall con- 

sider the two-dimensional and the three-dimensional part of the solution 

separately, 

a.    Two-dimensional Part of the Velocity Potential 

The two-dimensional part of the velocity potential can be 

readily derived from Eq,  (6) by making use of the simple reflection into 

11 



(5) 
the circular jet boundary, as given in Koning's theory     .    The following 

two different cases must be distinguished. 

(1)    | TI| > 1,  the Vortex Element is located Outside 

the Slipstream 

In this case it can be shown that the velocity potential 

outside the jet is due to the original vortex of strength   FlilJÖTi   at   y =  r| 

2 2-1-2 
plus an image vortex of strength   (1 - JJL  ){1 + |i )    T)     r(Tl)6r|   at   y = 1/T| 

(which is   inside   the jet).    On the other hand,  the velocity potential inside 

the jet is due to an equivalent vortex of strength   2|JL(1 + fi )    r(Ti)6Ti   located 

at the original position   y = T|.    For brevity we write 

6^(1- ^/(l + fi2), £
2 =(1- fx)2/(l + ^)' (7) 

which also satisfy the relations 

(1 -t2) =(1 -6^/^ = ^(1 + 6^. (7a) 

Then 

1 £1 1 
6^ =1?r(T1)6T1{F1(y-T1, z) +_zF1(y-1:>z)}       for r > 1, 

^r(T1)6T1(l-e2)F1(y-T1,z) for r < 1, 

(8) 

where   r = (y + z   ) '      and   FJy, z)   is given by (6b).    That this solution 

satisfies conditions (4) and (5) is readily verified by direct substitution. 

In the above expression the terms with   6..   and   6      represent the effect 

of the slipstream on   6^7,   outside and inside the jet respectively.    If the 

value of   r(Tl)   is given,  then it is seen at once from (8) that for a vortex 

12 



element located outside the jet,  the effect of the slipstream is to increase 

cp.   outside the jet and to decrease   y.   inside the jet. 

(2)   \r\\ < 1, the Vortex Element is located Inside the 

Slipstream 

In this case it can also be shown that the velocity 

potential outside the jet is due to an equivalent vortex of strength (1 - e?)r(Ti)6,n 

located at   y = r|, and the potential inside the jet is due to the original vortex 

r(T|)6T|   at   y = r)   plus an image vortex of strength   -6,11"  r{'n)6T|   located 

at   y = 1/T]   (which is outside the jet).    That is 

6^1 = Trr HTlMl-e ^(y-T], z) for r > 1, 

e ^ 
= i?r(Tl)6Ti{F1(y-Ti, z). -^{y- ~. z)} for r < I. 

This solution also satisfies conditions (4) and (5), as is readily verified. 

The effect of the jet slipstream is now to decrease the value of (p, both 

outside and inside the jet for fixed   T- 

The system of equations (8) and (9) represents the two-dimension- 

al part of the Green's function of the wing-jet problem.   For a lifting 

vortex line of a given circulation distribution   r(y)   extending from 

y = -b,   to   y = b?,  the two-dimensional part of the velocity potential 

can be obtained,   as the problem is evidently linear,  by integrating (8') 

and (9) along the lifting line with the contributions in different regions 

kept in order.    Thus we have 

1 

+ el(I    +J   2) TW^y-i.z)^     forr>l,        (10a) 

13 



-tif     r(11)F1(y-1,2)^2 for r<l. (10b) 
1J-1 1      ^       n^ 

b.    Three-dimensional Part of the Velocity Potential 

It has been found that the three-dimensional part of the velocity 

potential in the presence of a jet slipstream cannot be expressed in terms 

of the simple image system alone as for the two-dimensional part.    How- 

ever,  by introducing the same image system as that of   cp,   to one part 

of  (p?   and by leaving the remaining part of   cp^   to be determined,  the 

analysis can be somewhat simplified.    We proceed as follows, 

1.     ITJJ > 1,  with the Vortex Element located Outside 

the Jet 

In this case we write   (p^   in the form which contains 

partly the same image system as that of (8) as follows 

j 1 I ' d(P2 =^f r(Tl)6T1{F2(x, y-T], z) + -zF2(x, y--,z)+ cp J 
T) 

for r > 1, (11a) 

= -^r(Ti)5r){(l-e2)F2(x,y-Ti,z)+ ^ } for r < 1, (lib) 

i i 

in which   F?   is defined in (6c) and   <p     and   cp,   satisfy the Laplace 

equation and are to be determined by using conditions (4) and (5),    For 

this purpose it is convenient to write the Laplace equation in polar 

coordinates   (r,0, x)   with   r = (y + z   ) '      and   0 = arctan (z/y),   so that 

iV +l.9/+i7iV + ^  =0 (12) 

14 



where   y   = (p     for   r > 1   and   (p   = (p.   for   r < 1.    Substituting (II) into 

conditions (4) and (5),   and using the integral representation of   F,   given 
i 

in (6c),   one obtains two boundary conditions for   (p    as follows 

' • e   r
lTllX sinedj 

{(p--V.(p0)        =\itl\ -T—2 TTT 
J 0 r=l 1Jx (e  +TI  -ZTICOSG + I) /<: 

d(po dfp. 

?),,■■.{ 
x sin 9 

(X2+T1
2-2TICOS e + l)3/2 

(13) 

TjlX 

^ 
r] sin 0 

TT";    ' ,3/2 
.(I  +TI -ZTICOS 9+1)' 

d| I .   (14) 

The above integrals can easily be integrated.    By doing so,   one may 
i 

readily see that conditions (13) and (14) show that   cp      has the following 

behavior 

-2. 
cp   =0(|x|)   as   x — 0,    and   cp   = 0(x    )   as    (x oo. 

Hence   (p    and its derivatives will be small both near   x = 0   and   |x|  = oo. 

This result exhibits the advantage of   expressing   (p?   in the form (11), 

with the simple image system first singled out.    Furthermore,  (13) and 

i 

(14) indicate that   (p     will be a function odd in both   x   and   9.    It therefore 

follows that   cp    must be of the following form,  which is readily verified 

to be a solution of (12), 

■»oo 

^0 

oo 

^ = ^ = | \    Sin n9 (    S^k, r^K^kr) sinkx dk     for r > 1,    (15a) 

n=l 

oo 
00 

(p'- =^/   sin n0 \      S^(k, Ti)In(kr) sin kx dk       for r < I,    (15b) 

n=l 
0 
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where   I     and   K     are the modified Beesel functions of the first and n n 

second kind,    S*   '   and   S^'   are arbitrary functions of   k   and   n.     The n n 7 ' 
i 

functions   K     are chosen for   r > 1   and   I     for   r < 1   so that   (0     and n n r o 
i 

(p.   v/ill be regular respectively at   r = co   and   r = 0.    The super-indices 

(o)   and   (j)   of  S   denote the regions (outside or inside the jet) with which 

S   is associated; this notation is convenient for extending the analysis to 

the case of multiple jets. 

To facilitate the determination of  S^      and   S    ,  it is convenient n n 

to express conditions (13) and (14) also in terms of Fourier-Bessel inte- 

grals.    By using the relations (which can be deduced from the results on 

p.   388 of Ref. 15) 

(x 
J—J^ ^   =|\    K [k(T1

2-2Tico6e4l)1/2]sin(kx)kdk, 
^ir-Zricose-fl)^ ^0     0 

(16a) 

i -qlx 
de 

x       (|2+11
2-2T1cose + l)3/2 

'Jo 

co    . pk 
^ink

KX dk \ tKjt^^-Zricose 
Vhi    0 +l)1/2]dt. (16b) 

and the addition theorem (see Ref. 15,   p.   361) 

sin 9 K [t(T1
2-2Ticose + ir 2] 

00 

^[^^(tm^^t)-!^)^^)] sinnG    forlr^l,    (17a) 

n=l 

aj 

.^[I^^t)^^)-!^^)^^)] sinne    for hK 1,    (17b) 

n=l 
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together with the integral (which can be verified by differentiation) 

r jtV^t^^btl-I^at^^lbtlltdt 

2n 
aE    n IJat)Kn(bt), (18) 

one finds by straightforward calculation that (13) and (14) can be written 

{<Pj-^0) 
r=l 

_i)   ..inne      [ln(i)Kn(k).In(k)Kn(k,)]ü^dk.    (19) 
1     L. 

n=l 

"Fr        FT; r=l 

AC      oo 
41 v r00     k   '       ■ 

= 1?-i2nsinneJ     [ln(^)Kn(k) + In(k)Kn(kT1)]sinkxdk>        (20) 

n=l 0 

i i 
wnere   I     and   K     denote the derivatives of   I     and   K     with respect to n n n n r 

their arguments, 

A remark should be made here with regard to the argument of the 

Bessel functions when it becomes negative.    Since the right-hand sides 

of (13),   (14) and the left side of (17) are not changed if   r\   is replaced 

by   (-r|)   and   0   by   (TT-O), the right side of (17a) and (17b) is also unchanged 

under the same transformation.    Therefore we may adopt for the purpose 

of later calculation the conventions 

K (-z) =(-)nK (z),       I (-z) =(-)nI (z), nv     '     *   '     n nx     '     v        nv   ' (21) 

which are consistent at least for the present analysis. 

17 



Now application of conditions (19) and (20) to (15) yields 

/A. ,    f    2kl I'K (kri) ,   i 

n lT1k ll-e.kd K +K I )        n ^ J 1 x n  n    n n' 

S^dcr,) =e (i-e.Ä    n n     ?"    n,      • (22b) 
'   l-e^i^.K^J 

In these equations,  for those Bessel functions whose argument is   k, 

the argument is omitted for brevity.    Thus,  Eqs.  (11),  (15) and (22) 

constitute the three-dimensional part of the Green's function for a vortex 

element located outside the jet. 

(2)    |ii[ < 1, with the Vortex Element located Inside 

the Jet 

The solution of this case can be obtained by the same 

method as given in the previous section.    The final result, as can be veri- 

fied,  is 

6^2 =^pr(ii)6Ti{(l-e2)F2(x,y-T1, z) + (p^} forr>l,   (23a) 

5^2 =1?Fr(Ti)6T1{Fz(x,y-T1, z) -^F2(x,y-i   z) + (p'}   for r < 1;   (23b) 

CO 
^00 

<^ = I 2 sin n0 j     T|i
0)(k,T1)Kn(kr)sin kx dk for r > 1       (24a) 

n=l 

oo 
>oo 

(pj =-7f )   Sin ne J     Tn (k' ^y1^) sin kx dk for r< i:      (24b) 
n=l 

and 
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,n\ ,     [I K +K I ]l (kr\) 

n i        t    T] T » 

l-e.kd K +K I ) 1 v n   n     n n' 

T^^='it{i: 
2kK K I (kr!) 

iMl K    + K  I  ) 1  * n   n        n n 

(25a) 

{25b) 

In (25) those Bessel functions whose arguments are omitted have the 

argument   k. 

For a whole vortex line of distribution r(y) ranging from y= -b, 

to bp and extending through a jet, the solution of (p? is obtained im- 

mediately by integrating the Green's functions of part (1) and (2). This 

expression, however, will not be explicitly written down here, but will 

be included in the final form of the total perturbation potential given as 

follows.    In summary, 

(p(x, y, z) = (^(y, z) + (pz(x, y, z) (26a) 

and with the notation   cp = (p     for   r   > 1   and   (p = (p,   for   r < 1,   then 

47r(fl   =   \    2 rh)F(x, y-TV ZMT] - e?\      r(il)F(x, y-T^, z)dT1 
J-bn 

J-l 

-1       nh 
+ e .(C-D^'-v« 

oo 

+ i>   sinnG       K (kr)sinkxdk 
TrZ, J0     n* 

n=I 

■1     nh 
+        ^(riJS^k, Ti)dTi 

-b1    -1 

1 M + )     T (tl)T^ '(k, r\) d^ (26b) 
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-1     nh. 
4ff(pj = J    2 nr\)F(x, y~r\, z)dTi - e 2 M       + j   2 ) r(Ti)F(x. y-r,, z)dTi 

1 

CD 

"ei)     ^7^F(x>y-i>z)dti+|Y8inne r   In(kr)sinkxdk   \ 
n=l 

+ ] 'Z r(^)s[i
j)(k, ^dn + ]~   H^T^lk, ^di] 

.-1 

-b 

I' J-l 
(26c) 

where 

F(x, y, z) = F^y, z) + F^x, y, z) = -^ ^ 
y  +z 

1 + 
x 

;  Z±  l±  2.1/2 (x +y +z   )' 
(26d) 

By using the rule (21),   it may be noted from (22) and (25) that 

s^i^k..,) M-^'J^n),    T^J^k,^) =(-)n+1Tj1
0'j)(ktr,). 

Hence,  if  b, = b,   and if   r(-Ti) = r(Ti),  then the even terms in the infinite 

series all cancel out; similarly,  the odd terms vanish if   r(-'n) = -r(ri). 

It therefore follows that,   with   b, = b?, 

(p(x,-y, z) = + ^(x, y, z)    for      H-T]) = + HTI). 

As   V. — V ,   or   fj. -•- 1,  we have   ^i» £ T "* ^   (see -^^   ^^  t^en on^y 

the first term on the right side of (26b, c) remains,   which is known to be 

the lifting line potential in an otherwise uniform flow.    On the other hand, 

if   V    = 0,   V. > 0, then   ei = e? =1;   thus (26) reduces to the potential of 

a lifting line extending through a free jet,   that is,   for   r < 1, 
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,1 

0 =ir]     r(Ti)(F{x,y-T1, z) --^ F(x, y-i, z)}^ 

a) 

n=l 

+ 7^    "Si"n9I    '"'^^ 
1   r 2kK K I (kt]) 

l    / "   ", nl      ,       +K(^)llMdr1. (27) 
J-lli-k(I K   +K I  ) nT1J    ^ •k(I K   +K I  ) n    n      n n' 

The solution   (p     for   r > 1   of course loses its meaning.    In the general 

case the terms with the factors   t.   and   t      represent the effect of the 

jet on the potential   (p. 

2.    The Fourier Expansion for Circulation; Lift Distribution 

The spanwise lift distribution,   i(y),   defined to be the local lift 

on a unit span of the wing at station   y,   is given by the Joukowsky theorem 

i{y) = Pviocalr(y), (28) 

where    V,       ,  = V     for    r > 1   and   = V.   for   r < 1.     The total lift on the 
local        o j 

wing is then 

L =   \ i(y)dy = pr Vlocair(y)dy. (29) 
^span ^ span 

At the boundary of the jet   (y = + 1),  the lift distribution must be continuous. 

Hence it follows from (28) that the conditions 

r(i-o) = pr(i+o)   and r(-i+o) = fxr(-i-o) po) 

must be satisfied.    These conditions show that the circulation   T   will 

have a jump at the jet boundary.    It should be pointed out here that the 
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continuity of the wing surface at the jet boundary requires further that 

the downwash be continuous at the boundary; this condition remains to 

be enforced,   (see Equations 45,   46). 

In the following sections dealing with the single jet problem,   we 

shall limit ourselves to the case   b, = b, = b,   i. e.,  a single jet centered 

at the mid-span.    It is convenient to divide the span into two regions: 

R   :    1 <  ly| < b     and   R •    I y I < 1, 
o 7 1       7 

and define the angles   \\) ,   ik   (see Fig.   2) by 

y = b cos 9 for 1 < I y I < b, (31a) 

y = b cos y    = cos ik for    lyl < 1, (31b) 

so that 

ijj    = cos"   i = ß and   ik = 0     at   y = 1. (31c) 
ob I 

In order to account for the possible slipstream rotation of small 

magnitude,   the circulation   r(y)   is not to be limited to even functions of 

y.     We now assume that   r(y)   can be represented by the following Fourier 

series; 

r(y) = 4Vjrv(y)   in region   R^,     v = 0, 1, (32a) 

2N 
o 

•'  (y) =   >     A^0) sin nd;        in   R  , (32b) ow        /_/       n To o v        ' 
n=l 

2N, 

^(y) = r0(y)  + A^ +  ^    A^ sin n^    in   ^ (32c) 

n=l 
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in which the numbers   N     and   N,   may be set as large as we wish,   or 

as practical.    The expansion for   T (y)   is suggested by the usual lifting 

line theory.    In (32c)  the constant  A^ '   is introduced in order to satisfy 

the jump conditions (30),  the difference between   T^y)   and   ro(y) + A0 

in   lyl < 1   is chosen to be a sine series since first,  the half-period Fourier 

expansion in   0 < ik <  TT   is rather arbitrary and second,  the sine series 

is more amenable to analysis than the cosine expansion.    Now application 

of condition (30) to (32) yields 

N -1 o 

A^Mtx- 1))      A^BinfZn+Dß, '2n+l (33a) 

n=0 

N 

0    /     A20n sin 2nP 
n=0 

(33b) 

If there is no slipstream rotation and if the angle of attack is symmetric 

about the mid-span,  then  A^   = Ay   =0   and hence   (33b)   is automatically 

fulfilled. 

Substituting (32) into (29) and integrating,   we obtain 

8pV! 
A«1» ^,bA(°> + A«1', 

N    -1 o 

+ (iJi-l)b A(0) 
A2n+1 

sin 2nß 
4n 

n=0 

sin 2(n+l)ß 
^n+l)' (34) 

(1) ,(0) It is noted here that the terms with  Aw   for   n > 1   and Av;   make no 
n en 

contribution to the total lift. 
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3,    Downwash Distribution 

(8) 
According to the approximate lifting surface theory of Weissinger     i 

the wing and its wake are represented by a bound vortex line located at 

the quarter chord (which is also the center of pressure) together with a 

system of trailing vortices as in the lifting line theory,   and the flow is 

then required to be tangential to the wing surface at the three-quarter 

chord points.    Let the quarter chord be located at   x = 0   and let   c(y) 

be the half-chord length at   y,  then the downwash at the three-quarter 

chord is 

w(y) = -8<p(c( y, 0)/8z . (35) 

In carrying out the differentiation we note from (26d) that 

z (c,y.,.01.      '       {u ,CM/2}  =^0(7-1.=).      (36a) 
(y-n)    L l(y-T|) +c \ '   ■>       ' 

-\ F
z(c' y v0) = ^ wffiG{v- i'c) = - ^ G(y- vc) -    (36b, 

where 

G(y,c) = 0^) + G2(y. c), (37a) 

.2 1/2 2 1/2 
Gl(y)=|'      G2(yfc)=i[(l+I2)      -U^/iUiU^)       ].   (37b) 

y ' c c c 

The function   G(y, c)   is decomposed as shown above such that   G2(y» c) 

is regular for all   y   and for   c > 0,  the only singular part of   G   being 

G,(y).    It can be seen that   GJy)   actually corresponds to the value of   G 

at large distances behind the wing (the so-called Treffetz plane solution). 
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By using (36),  the integrals containing   F     in the expression for   w   can 

be integrated once by parts.    Doing so,   we find that the terms evaluated 

at the limits   y = jf 1   and   y = - b,  b   all vanish on account of condition 

(30), relations (7a),  and the condition that   r(- b) = r( b ) = 0.     Furthermore, 

k [ Kn(kr)sin ne] ^ = i ^[ K i(kr)sin ne] z=0 = ^ Kn(ky) 

which is valid for both   y > 0   (9 = 0)   and   y < 0   (9 = TT)   provided the 

continuation of   K (kr) from   9 = 0   to   9 = TT   follows the rule (21).    The 

same result applies if   K     is replaced by   I .    In summary,   we obtain 

the downwash   w(y) = w (y)   for   1 < lyl < b   and   w(y) = w.(y)   for    lyl < 1, 

as follows 

'b ,„ n\ 

■I 

y 

dV 
47rwo(y) =  \      G(y-Ti, c)1idT1 -e2J     G(y-T1, c)^i dr. 

-b 

dr 

■^Oaiv-^<d' 
CO 

2 V v 

v=l 

K (ky)6in kc dk 
TT ^ y JQ 

T1)r(Tl)   dT] 

-1     nh 

j-b ji 
s(

v
o)(k, T1)r(ii)dTl 

(38a) 

dr -1     nhy dr, 47rw.(y)-j      G(y-Ti.c)^idi1- e2^       + j   JG(y-r|, c)-^ dt] 

♦ e, j"   G(y- i, O^Td, - I J I £ ykyjainkcdk [ J 

syjhK T1)r(Tl)dT1  + T[,j)(k,Tl)r(T1)d11 ] (38b) 
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Now we substitute the series expansion for   T   given by (32) into 

(38),   we note that some of the resulting integrals can be evaluated in 

closed form.    For example, 

p P cos n6 d 
jn    cos 0 - co 

de_ 
s Ijj 

sin mjj 
sin \\)  ' 

C   cos n9d0 . »nil   r ,    .   .   2  ,.1/2^/.   2  ,.l/2    .      r    i .  , 
J     cos e - y = "(sgn y)    ''i lyl-(y -i)    i /(y -i)    . for lyl > 1, 

where   P   denotes the Cauchy principal value of the integral,   and   (y -1) 

represents the positive branch of that function.    After some rearrangement 

we obtain the following expression for the downwash   w(y): 

a,    for   1 <  ;y' < b 

2N 
w 

V. 
J     n=I 

sin nijj 
"A(0)    2-_-^+fi   (y;b.;R   +R1)-eJp (JiRj+fi  (^-iR,)] b     n sin dj nK h   c      o     r      2L    nv b     1       nxD' c     1/J 

i,bZ[Q (by;R   ) + A (by;J- iR   )] 1     L    nv   y     o' nv   '   be       o'J 

2N 1 
,n+l [|y|-(y2-l)l/2]n .(l-e2)Z   ^|-2(sgny)^ ^^jr^^M*^ 

n=l l" 
oo 

oo 
2   )    ^ \     K (ky)sinkcdk 

v=l 

jj     +J S^^^F^^dri+J   T^iK^r^drj: 

(39a) 

b,   for    |y| < 1 

2N 
w.     v^ /r,, f   sinadi . 

J =)    £A(0)'Z—r~£ + ü (f^;R +R1)-e?[P (^R )+fi ^,b;R )] Y7     ^    o    n    [      am ^ nv b   c      o     r      2L    nxb     o' ""n^b    c     o/J 77 
J     n=l 

+ e 

2N. 

^[Q^by^+Ajby^^)]} 

^        .,> r   sinnik , r      ? n~^ 
>    nA^NZ--,—^4 fi (y;-;R  +R1)+e1   \ . /,    ^—. ,/, 
^        n   [    sin ^      0nvy'c     o     1'     1[(i.y

2)1/2   ^J^^L/Zya 
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w^w 
CO 

}-7^I0V
y|sinkcdkü-i 

v=l 

+ f s(j)(k.i1)r0(T1)dT1+ r TLJ) (k. ^r, (39b) 

In the above equations the new functions   P ,  Q^, Qn   and  A^   are defined 

as follows: 

2 rß     (       cos nede 
^H^^J/j^THF^T   ' 

TT-ß 
cos n9 d0 

Pn^;Rl)=   i   Jp cos G - C     ' 

^  , .       2 r       f       cos 9 cos n0    ,Q 

-TT-ß 1    cos 9 cos n9   ,fl 
Qn(^;Rl)= -i.) -Ycüry 

(40a) 

(40b) 

(41a) 

(41b) 

rt/2 
fi (C;^RJ =    f (^^e)de,   a (^XiRj =       f (^K;e)de.   (42a) n 0        JQ   n u i        j„        n 

fn(^6)Y(r;c:ie-uc- -   ■-' 
L+[l+X (cos 9- 

fi^CAiR^R^ =fin(^;X;Ro)+ fi^^AiRj) 

os n9     + (-)     (cos 9 4 QcosnQ   \    ^42bj 

0¥/2     l+[l+\Z(cos04C)Z]i/2i" 

AnU;MR0)-J    gn(^;X;0)d9,       An(^\iR1)=J        gn(^;\;e)de,     (43a) 
r 

r, /t-.\.D\-^   /   (sec9-Ücosn0 , .   .n+1     (sec0+Mcosn8 1 

(43b) 

A^CjXjR^Rj) = \(C;X;R0) +  A^CiXiR^. 

The functions   nn(C„X)   and   A(^X)   are readily seen to be regular functions 

for finite   t,   and   X.   (that is,   for   c > 0).    The functions   P,   and   Q1   defined 
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by the above integral representation can be integrated in closed form, 

and   P , Q     (for   n > 1) can be expressed in terms of elementary functions 

and   P, and   Q..    For the purpose of numerical computation,   however,  it 

is quite convenient to apply the modified Simpson's rule directly to evalu- 

ate these integrals.    For large values of   n, the most significant contri- 

bution from the integrand comes from the neighborhood of the points of 

stationary phase.    As to the analytic behavior of   P     and   Q ,  it is ' r ' n n 

noted that they all have a logarithmic similarity at the jet boundary 

y = + 1.    In fact,   it can be shown that if  £   is a small positive quantity, 

then for   y = 1 + £, 

P
n<K;Rll S +£^V°8' * Od).   Qn(by;Ro)Sf^£-loge t 0(1) , 

r 7rb  sin ß 

(44a) 
and for   y = 1 -  £, 

r ffb  sm ß 

(44b) 

The singular behavior of these functions at   y = -1   can be deduced from 

the above results by using the relations 

Pn(-^;R) = (-)n+1PnU;R),     Qn(^;R) = (-)n+1Qn(^R).       (44c) 

Aside from the logarithmic singularities of   P     and   Q ,   we 

further note from (39) that the downwash   w(y)   also has square root 

2     -1/2 singularities at the jet boundary,  which are proportional to  (y -1)   ' 

or   (1-y )" '      as they appear in the series    )   nA* '.    The strengths of 

these square root singularities are seen to be independent of both the 

span   b   and   chord   c,   whereas the strengths of the logarithmic singu- 

larities (see Eq, 44) depend on  b, but not on   c.    This implies that all 

these singularities are solely due to the effect of the slipstream boundary. 
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and therefore are inherent in both the lifting line and lifting surface theory. 

Now we must ensure that the downwash does not become Infinite 

at the slipstream boundary if the wing surface is continuous there.    In 

order that the square root singularities of   w(y)   at   y = 1   and  y = -1   shall 

be eliminated, the relations 

Nl-1 

V    {2n+l)A^)
+1   =0 (45a) 

n=0 

and N, 

2nA^j   = 0 (45b) 

n=l 

must therefore be satisfied.    Furthermore,  in order to remove the 

logarithmic singularities of   w(y)   at   y = + 1,  the additional relations 

N -1 o 

Y     (Zn+DA^   cos (2n+l)ß = 0 (46a) 

and 

n=0 

N 

>       2nA^0n C0S 2nP = 0 (46b) 
n=l 

must also be satisfied,    Conditions (45a, b)   and  (46a, b)   maybe regarded 

as four constraints on the coefficients   A^  '   and  A* '   so that the down- 
n n 

wash will be finite at the jet boundary. 

It is convenient for the purpose of numerical computation to first 

remove the singularities in the expressions for   w     and   w,   by applying 
j 

the conditions (45), (46),  or,  which is equivalent, by making in (39a, b) 

the following replacements: 
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.2(ßgny)-Hi iiviV-ifl" by2(8gny)n+i MW-i)1/2]n 

TTV* 

? n~^ 5 ( n-1 •"i 

(i^i1^ lud-yW by (r?PW>2in'(S8ny>,'"1r 

P (^;R  )   by   P*(^;R  ) =- ' ' nv b     o'     ;      ir D     o'     TT 
1 

+ -H) 
n+l 

Pu(^Rl)   ^   Pn<^Rl)=lr 

0 

2p/2 
-cos 0-.X      cos 9 + ^  . 

(cos n9- cos nß)dö , 

i  +    (-1) 
n+l 

Q (by;R   )   by   QV(by;R   ) =- 
n*   '     o'      1       nv   '     o'    TT 

Q^by^^   by   Q^by.R^ij 

0 

7r/2 

.cos 9 - ^     cos 9+ ^ 

cos 9 (-)n+1co8 9 
T^by cos 9      1+by cos 9 

(cos n9- cos nß)d9, 

cos 9     ,   (-)      cos 9 
1-bycos 0     1+by cos 9 

(cos n9 - cos nß)d9 , 

(cosn9- cosnß)d9 

With these substitutions the downwash   w(y)   is therefore regular every- 

where over the wing.    Although conditions (45a, b)   and   (46a, b)   have 

been once applied as shown in the above substitutions,   they must still 

be used in the calculation of the coefficients   A*       and  A        since no 
n n 

coefficient is actually eliminated in this process. 

4,    Application of Boundary Conditions on the Wing 

In order to take the effect of small slipstream rotation into ac- 

count,  we make the following simplifying assumptions, 

1.    The axis of the cylindrical slipstream is parallel 

to the undisturbed main stream and passes through 

the mid-chord point of the wing«    The velocity of 

the slipstream may have a rotational component 

with distribution   ru)(r)   about the jet axis, where 
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r   ia the radial distance and w   is the angular 

velocity,    w   being taken positive if the rotation 

is counterclockwise when viewed from the rear. 

The rotation is assumed to be small, that is, 

luI        /V. « 1   for   r < 1, 1   'max'   j 

2, The effect of rotation is equivalent to a change 

in the stream direction at the wing, giving rise 

to a variation in the effective wing incidence 

inside the slipstream, but is assumed to have 

no effect outside the jet. 

3, The rotational velocity of the slipstream does 

not vary appreciably in the region over the wing. 

Hence,  if   a(y)   denotes the local geometric    angle of attack at 

station   y   of the 3/4 chord line,  then the boundary condition that wiyj/V,       , 

is equal to the local effective angle of attack may be written 

w (y)/V. = a(y) + yco(y)/V. for  lyl < 1 , (47a) 
J J J 

wo(y)/Vo = Q(y) for   l<|y|<b. (47b) 

Obviously w(-y) = w(y) so that yw(y) is an odd function of y. However, 

in general practice the geometric wing incidence is symmetric about the 

central span so that 

Q(-y) = a(y) for   lyl < b . (48) 

Since in the conditions (45a, b)   and   (46a, b)   the odd and even terms are 

not coupled,  it becomes convenient to decompose the problem into even 

and odd parts as follows. 
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a. The Even Part 

The boundary conditions of this part reads 

wj, even(y,/Vj = QM for   0<y<l (49a) 

Wo, even(y)/Vo = aW        ^r   1< y < b (49b) 

where   w.  even   and   wo even   are respectively the even part of   w. 

and   w ,   which can be obtained directly from (39) by deleting the even 

terms with   n = 2, 4, 6, .. . , 2N.    The two conditions (49a, b)   contain 

No+1^   unknown coefficients   AJ |,  ,  A^ ', ,   which should be deter- 

mined under the constraints (45a) and (46a).    Hence we may take 

(N + N,- 2)   appropriate points in   0 < y < b   at which we apply conditions 

(49a, b).     For instance,  we may choose   (N,-!)   points in   0 < y < 1   and 

(No-l) points in   1< y < b. 

b. The Odd Part 

For this part we have the boundary conditions 

7j,odd(y) = yu,(y) for 0<y<1' (50a) w. 

Wo, odd{y) = 0 for   1< y < b , (50b) 

where   w.     ,,   and   w^ ^ , ,   are the odd part of   w.   and   w ,  which are j, oad o, oaa ^ j o 

obtained from (39) by deleting the odd terms with   n = 1, 3, 5, . , .  .    These 

two conditions contain   (N + Nj   unknown coefficients   Al      and  A\' , x   o       1' 2n 2n 

which must also satisfy conditions (45b)   and   (46b).   The same points 

chosen for the even part may also be used for this part.    Thus the problem 

is now reduced to solving a system of   (N    + N,)   linear algebraic equations 

in either the even or odd part. 
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C.    MULTIPLE JET THEORY 

1.    Geometric Configuration of a Wing and Multiple Jet System 

We suppose that there are in general   J   pairs of jet slipstreams 

which are symmetrically located with respect to the mid-span,   so that the 

total number of jets is   2J.    All the slipstreams are assumed to be circular 

cylinders,   with their central axes parallel to the main stream and passing 

through the center-chord points of the wing.    The span of the wing is divided, 

into   (2J + 1) regions,   denoted by   R  .    v = 0, 1, 2, . . . , 2J,   which are defined 

as follows (see Fig.   3). 

R     is the region on the span outboard of all the jets; 

R^     ,   is the region inside the   vth   jet pair,    v = 1, 2,. . . , J, 

counted from the wing tip toward the center; 

R?     is the region between the   vth   and the   (v+l)th jet pairs. 

The boundaries of these regions along the   y-axis are marked by the points 

-b^-b,-^, -b2,...,-b2J,    b2J+1=0,    b2j,...,b2,b1,bo=b. 

For every point   y   in the region   R      we define   (v+1)   angles,   denoted by 

y=bscos^s,    s = 0, 1, 2,..., v,     for   b^ < I y I < bv ,   (51) 

At the point   y = b ,  let 

LJJ    =ß(
c
v) =co8"1(b,yt>a)>    s = 0,1,2,..., v,    v=0, 1,...,2J .     (52) 

S S V       Ö 

Furthermore,   all the jets are assumed to have the same radius,   which is 

normalized to unity.      The centers of the   vth   jet pair are at   y = a 
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and   y = -a ,   where 

L    =T{b,    i+ b,  ),    a    = -a .    v = 1, 2, . . . , J. (53) 

Finally,  the geometric incidence of the wing and the slipstream rotation 

of the jet pairs,  if any,  are both assumed to be small and symmetric about 

the mid-span. 

2,    Velocity Potential of a Wing Extending through Multiple Jets 

The image system of a vortex element due to a single slipstream 

has been determined in Section Bl; it will be called the primary image 

system for the problem of multiple jet slipstreams.    The image system 

of a vortex element generated by a set of multiple jets contains the images 

of the primary and higher orders (i. e.  the images of the primary system 

and in turn their images) since it takes the images of infinite orders to 

completely satisfy conditions   (4)   and   (5)   at all the slipstream boundaries. 

In order to simplify the analysis,   the image system of a vortex element 

due to a set of jets will be determined by taking into account only the pri- 

mary and secondary images and by neglecting the images of higher orders. 

The final result of this approximation is expected to be accurate enough 

for practical appHcations.    In this manner the two-dimensional part of the 

velocity potential can be obtained as follows. 

a.    For a Vortex Element  r(r|)6r)   located at   y = T]   in   R, 

(Outside All the Jets) 

(p      outside all the jets is due to   r(il)6r|   at   y = r|   plus 

h-a^) 
^ r('n)6r|   at   y = a   +  ,   summing over   i, 

T1"ai 
i = -1 T- A.     ~ U   f    Ü    9     9       >J   J 

CO.   .    inside the   X.th   jet is due to   (l-e-,)r(Tl)6r|   at   y = r) 

*l(l-€J                                           1 plus    -7-r(ri)6r|   at   y = a   + ,   summing over   i, ^ X., 
oi-a.r * ^ 
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b.    For a Vortex Element   rh)6ri   located at   y = r)   Inside 

the   Uh   Jet 

(D     outside all the jets is due to   (l-fp^i1!)^   at   y = TJ 

e1ü-c2)     0                            j 
plus    7-r(r|)6ri   at   y = a. + ,  summing over i , # X.; 

(P.   t   in the   ith   jet is due to   (1-eJ   r(Ti)6ri   at   y = r\ , 

for   i, # \; 

€ 

(p ■  .    in the   X.th jet is due to   r(T])6T] at   y = t|, 

1        „,  ,    1 ,      elU C2i   „,  v, ,     1 
plus j r(r|)6Ti   at   y = a   + —^- ,   plus    2 Fh)^   at Y = &

l 
+ ^-^-> 

summing over i, ^ X., 

Again, like the previous case of a single jet,  the three-dimensional 

part of the potential can be decomposed into two componentSj  of v/hich one 

part can be written down according to the same image system as given 

above,  and the rest can be expanded in a Fourier-Bessel series.    Since 

it has been found that the contribution of the Fourier-Bessel series is 

very small,  this part of the velocity potential will be constructed by 

including only the images in the immediate neighboring regions, whereas 

the images in the other regions and the higher order images will be neglected. 

Thus,   summing up all the vortex elements along the span,   we obtain the 

following result for   m.    With   cp - (f     outside all the jets and   w = (p.  x 

inside the   \th  jet (which will be taken to be one on the positive   y-axis), 

we have 
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J       -b-,   lib-,                              J          t 

4X=)   f +f       {F(x.y-T1,Z)+)      L^Fix.y-a  --i-fz)jr{Ti) 

J       -b, b,    , J . 

^^^^ f +f m*,y-r\,z) + )       L-Fix.y-a  --i-.zljn^dT! 
^^/-b,    , Jb,        >> ^T (n-a4r 

i   ^    i     J Vrl        2v-l       2v i=-J x       i 

+ 
J       co b, b,    2 

i=-Jm=l '   b2i+l     b2i-l 

b2i-l      ,   ) «, 
f j Tj^M-a^rWdTil  , (54a) 

J        -b-,   ,,       b-, 
IT-     n       2v + l     p    Zv    r 

4^j,r(1-£2>Z Jb     +i    {^y^i 
v=0    "D2v 0Zvil 

v'   ei 1    i r^"1 
+ )        ,  F(x, y-a  - —-, z)mT])dr\ + F(x, y-T], z)r(Ti)dT1 

itlj   ^7 '    ^      J Jb2X 
(i#K) 

J ,     b-,    , J       -b. 

+ ^-h^lJ, j     F(x' y-11'z)rdTl +^ J       ^^ y-71'z)Ydr]} 
v=l    b2v v^l    -b,    . ^ 

r
b2\-ir  e 1 f   ^(i-6/ i      1 

oo b-,. b-,. 
?^ poo j-p   2\      p   Z\-T]  .., 

^Z   ^^O/m^^^^Mi       4 Sm 
m=l U b2\+l     b2\-l 

b 

+ J ^(k^-a^rdri j  , (54b) 
;b2X 
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where in the second term of (54a), the sign )      denotes the sum over   i 

except when t ~ v    for   r) ^ 0   and   / =   -v   for   T] < 0   (i. e. ,  the  v th   jet 

pair are deleted  in the   i-summation.    In the above equations   F(x, y, z) 

is given in (26d) and   S(o)
r  S^^   T(o)

f   1^   by   (22)   and   (25).    The 
m        m       m        m      ' x 

variables   r . 0     are defined by 
i     i 7 

y ' ai = riCOS Gi'    z = r^cos e
i'    i =-J»-"-1.1. .••. J' 

(54c) 

3.    The Fourier Expansion for Circulation; Lift Distribution 

The spanwise lift distribution   i(y)   and the total lift   L   are again 

given by (28) and (29).    The circulation distribution   r(y)»   and hence the 

local lift   i(y),    is assumed here to be an even function of   y,    that is, 

r(-y) = r{y)-    In order that the pressure and the local lift shall be con- 

tinuous at the jet boundaries,    y = b,,   b^, . . . , b-)T,  the following conditions 

(similar to 30) 

f   H 1 rv = 1, 3,. . . 2J-1, 
Hb  -0) =\ ^r(b   + 0)    for-^ (55) 

II/HLJ V U = 2.4....2J, 

must therefore be satisfied.    The continuity of the downwash at the jet 

boundaries will be examined later in the analysis. 

The circulation   r(y)   of the present case is assumed to have the 

following Fourier expansion 

r(y) = 4V.rv(y) ,     for  bv+1< lyl < bv,    v = 0,1. 2 2J ,      (56a) 

N -1 o 

ro<y)=^    A2n)-f.l sin(2n+1)^o' <56b) 

n=0 
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N   ■ 
v 

rv(y) = rv.1(y) + A(
o
V, + )    A^sin (ln+l)±v,    v=l, 2 ZJ.   (56c) 

n=0 

The last two equations may also be combined to give 
N  -1 

s 

rv{y) =)   |A(
O
6)
+^       A^  8in(2n+lM>8j   for   v=0, 1, 2 2J,   (56d) 

s=0 n-'o 

A       - 0   being understood.    The above expansion gives   r(y) an even 

function of   y,   as clearly suggested by the fact that the downwaeh   w(y) 

will be symmetrical (even in the presence of slipstream rotation) about 

the plane   y = 0. 

It should be mentioned here that a few different expansions for 

r(y)   have been examined by the authors by performing several numerical 

programs on an IBM-709 machine.    One of these expansions is particularly 

worth noting.    This expansion assumes the same form as (56) except that 

in (56c) the term   T     Ay)   is removed.    This reduces the number of terms 

of the expansion in the inner regions   R  ,    v 5 1.    Thus the series with 

(v) 
coefficients   A,   ,,   is assigned only to the region   R  ,   in   which 

b   ,, < lyl  -< b ,    or   0 «. d;   < ß(v+1)   and    TT - ß^4^ < dj   < TT.    Strictly 
v+1        ' v' Tv       v rv Tv ' 

speaking,   these series in this type of expansion are not Fourier series 

since the set of functions   sin (2n+l)i|j     are not mutually orthogonal over 

the region   R  .    It has been found that this type of expansion induces 

numerical instability in the computing program.    The expansion (56),   how- 

ever,  has been found satisfactory. 

Now application of conditions (55) to (56) yields 

1 N  -1 

('iri,J   s=0 n=0 

v = 1, 3, . . ., 2J-1, 

{, for 
' v = 2, 4, ., ,, 2J 
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in which   A^ '   = 0.    Thus the total number of the arbitrary coefficients 

AJVl   is 2n+l 
2J 

sol 2J (58) 

s=0 

The total lift   L   is obtained by integrating    i(y)   along the span. 

8PV 4V       J0 
J J 

bo 2J b 

V £   vlocal nyidy -»I       r r, (y)dy 

v=0,1...      v+1 

J~     b2v-l 

v=l   b2v 

On substituting (56d) in the above integrals,   and making use of   b?    ,-b,   = 2 

(which is the diameter of the jet),   we obtain 

L 

8PV .^f^hl^H^H^^^-^l 
j v=0 v=ls=0 

b s + x 

Ns-1 

(s)     (*\    Sln ZnK    "Sln ZnK 
(A^'-AJ8', ) =  

2n+l       2n-l ' 2n 
n=l 

(s) sin 2N ß-2v)- sin 2N   ß(2v"1) N srs s rs 
l2N -1 s 2N }■ (59) 
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4.    Downwash Distribution 

Again we let   c(y)   be the half-chord length of the wing at station 

y.     Then the downwaeh at the three-quarter chord can be derived from 

the solution (54) by differentiation, 

wo(y) = - ^o(c'y'0)      for   ^U^  lyU b2\'    ^M. — 'J 

(60) 

wj, ).(y) = " "^ ^j, x(c'y'0) for bz\< lyU hz\.i' x = l'z J- 

On integration by parts of those integrals in the expression for   d(p{c, y, 0)/8z 

which contain   F  ,   and by making use of (36),   (37) and (7),   we find that 

those terms containing   G(y-Ti),when evaluated at various limits of integration, 

all vanish by virtue of (55) and (7a),   and we finally obtain 

ZJ b 

(l-6°ddtz) j [G(y-T1,c) - G(y+Ti,c)]^rdT1 

u-^j bv + l 

J      J b, Zv 
eil I 1    wy-'r^r/^^i^r^ 'h *     '    1 

v=0 i=~J      2v + l 

J^       J   ,        b?   _-, 

V=l     ir-J   ^ZV 
(i^v) 

+ 47rw   , (61a) 
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f2 J   J . 

4ffw (y) = — r(b2   +0)[G(y-a  -^-J—,c)   - G(y+a + ^-1—, c) ] 

J      J 
-e I   l   r<^-i+0HcKy-VE--^.c)-G(y^+     1—   c)) 

v=li=-J Zv-1    ' 2v-1    ^ 
(i^v) 

J 00 

n i-i 
i=-J m=l 

oo   KJMy-a^) 
sin kc dk JT 

bZi-l ' •,b2, 

-aJrdt! •   ; 

2J 

^wjr,(y) = (l-e2)^   (l-6v
odde2) 

v=0 

D 

j        [G(y-Tvc) - G(y+Ti, c)]  ^Tdt] 

v+1 

•z\-\ 
+ e ij [t1G(y-T1,c) + (2-ei

2)G{y- 

2\ 

J 

ax » c) \   Ti-a. 

^M G^ai-^'c)^rdii 
i=-j 

J       J ,      b 

i.-n   II-„T     UP,,J.I ■» -t v=0 i=-J     "2v+l 

+ 47rw 
j.^  ' 

(61b) 
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I. 

i=-J i=-J ^    i 

6\- 1 / 

J    J   , 
+ei(1+tl)I   I     nb2/0)[G(y.a-FJ-r..c)-G(y-a+TLralc)] 

S(^2)J    I     r(b2v_1 + 0)[G(y-a-^      c)-G(y-a+&-i-r      c)] 
v=l /=-J 2v-1     l 2v-1     ^ 

(I m \             sin kc dk 

m=l 2\+l 

ri   ZA.-2    ,., p   ZK-1     ... > 
+ i        s^k^-a^rd^ I        ^(k.n-a^rd.L 

b2\-l bZ\ J 

In (61a) and (6lb),   the notation   5 is defined by   6 = 1   if   v   is an 

* 
odd integer and   =0   if   v   is an even integer.    In the expressions for   w 

* -1 
and   w.   , .  the terms with   G(y + a. + (b  -aj    , c)   arise from the fact that 

the reflections of the image systems are not complete; these terms will be 

removed if all higher order images are included in the  solution of   (p.    How- 

ever,   it is noted that these   G   functions are regular in their respective 

regionsjand their magnitudes,  with their multiplication factors (depending 

on   |i., £ 1 or   t   )   accounted for,  are generally very small.    Furthermore, 

it has beer found from the numerical results that the contributions of the 
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4 # # 
Fourier-Beesel series in w     and   w.   .    are alao small.    Hence   w o j, \ o 

* 
and   w.  .    are rather unimportant compared with the remaining terms 

it K 

in the expression for   w     and   w.  .. o j, \ 

Now from (51) and (56d) we find 

N -1 v       s 

Z^ =llf ^s = 4VJ    \       (Zn+DA^^cos (2n+l)^d^ (62) 
8 s=0 n=0 

forbv+1< lyl<bv, 

v = 0,1,..., 2J. 

Using this expression for    F dr|   and   (36)   for   G,  we find that some of the 

resulting integrals which contain   G,(y-Ti)   and   G^y+T))   can be evaluated 

in closed form.    The final result is given in the following.    Since   vv(y)   is 

evidently an even function of   y,   only the result for positive   y   will be 

given here. 

a.    Outside the Jets,    b-. ., < y S b^. ,    X. = 0,1,,,. , J 

„    2N -1 ,   > 
i  \ 2X        s A(s) 

W (V) v^      ^ "A sin ndi 

V. L      L b sin [T 
J 3=0n=l, 3f...      s s 

2N -1 

2(1-6^) 4J   (i-6rS)f  ^[y/vf^]R 

8=2U1 n=l, 3, ... , (y/bs)^- 1 
s ,    A    v2 

,    2N -1 
£   2v-l     _s ^(s) 

v=i s=0 ii=lj 3,. .. 

+p(S)(      y     ;R )] 
n   v   b        2v-rJ 
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^zC-'x' 
n=I 3 "ZM 

ZJ 
^^pUU!,,^^ RJ 

2\+l 
V=2\+2 

2J 

-r^-^,: y,  vi 
2\+l 

v=2\+2 

2J v   ^r1 .,(.) 
*l*-Cyll ^'lu!,"(^^:RJ 

v=0 s=0 n=l, 3, .. s 

^sV^v] 
2J J 

odd 
V   ^s"1 

v = 0 ^=-J s=0n=l, 3, ... 

+ QLs,(-y^rRv) + ^8,(y^;Rv) + A^t-yia^Rj ] + 

w*(y) 
(63a) 

b.    Inside the   Uh Jet,    b      < y 5 b        ,   \ = 1, 2,..,, J 

/   ^        ^-1  ^s'1        AB) 
\X(Y)   _2y      Y ^n        Sin ^s 

J 8=0n=l, 3r...    S s 

2J 

-2(l-62)^  (l-e2+6fe2) 

2N -1 .   , 

<' [y/bs- M«)2-1!" 

8=?A 

2N -1 2\-l"i,s 

n=l, 3, 

(s) l\-l 

^y/*/-' 

2J 

3=0n=1.3,... s   v=0 s   v=2\ s=0 n=l,3,. 

2J 2J (2N2x+rlMs) 

s   ;=0 n^,...   J2X "       U2Xv=2\+l 
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13 

6 v=2Ul v = Os=0 n=l,3,...     8 

T     7      
2N  -1 .   . 

J       - i       ^(s) 

^JL (1-6X62X) 
b      x      v  s   ' 

X  [P^( X JR,   ) + P<6)(-X;R,   )] 1    n   v  D 2v'        n   x   D 2v'i 

2N -1 
(B) 

2J 

(l-e2)^(l-6v
0dd62);      )       ^^   rn(8) 

v=0 0    13    Tf   ["V^V 6=0 n=l, 3,...     B s 

s=0 n=l,3 

M), 

,,   , 2N -1 2X.-1      8 

s=0 n=l, 3 i=-J 
T    ,     2N -1 
J    2v 8 

*^y*,*2x.iU 
v=0 6=0n=l,3 |=-J 

X[Qia
S)(y:ai;R2v)+Q|.i

8)(-y;-ai;R2v)+A(S)(y;ai;R2v)+A|a
8)(-y;-ai;R2v)] 

wj. x(y) 

V. 
(63b) 

m In the above equations,    w     and   w.   .    are given in (61);   6       are the 
^ o j, \ b x    '       n 

Kronecker deltas, 

6     = 1   if   m = n    and   5     = 0   if   m ^  n ; 
n n (63c) 

and the functions   P,   Q,  0, A   are defined as 

p(v+l) 
r> rs 

cos n0d6 '(S) (y/b   ;R   ) =  I ( ,   , 
^ßx cos 9 - y/b 

(64a) 

.(v+1) 

Q(
n
s\r>^v) - I 

(b cos 9 - ajcos nO d9 4   s i' 

(bscos 9 - ai)(ai- y) 
(64b) 
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v + 1) 
.   . b ,     b     ..   .   h (c      o     v/b  )coti m    !9 
n     ^     c       "'    f ^c   '   J3(v) b     2 2   l/2 

1 +ll + (-i) (cos Q- {-)  ] 

.(v+i), 1 ß^Ti'{^ L + a - y) cos nQ dB 
.   . ,       pr8        vb  cos Ö - a,        i    ' 

Ks ]+    1+ ^ +  a  -   y 1 <L y b cos 0-a. '    J 

c s ^ 

The strongest singularities which appear in the expression (63) 

for   w(y)   are the square root singularities at   y = b ,    s = 1,   Z,   . . . ,   2J. 

In order that these singularities at the jet boundaries be removed,  the 

following   2J   relations 

2N  -1 

n=l, 3, , . 

nA^;   =0,    s = 1,   2,   ...,   2J (65) 
n 

must be satisfied. 

/a) (s) 
Further,   it is noted that the functions   Pv   '   and   Qv   '   may have n n ' 

logarithmic singularities at the jet boundary.    These singularities are 

listed below. 

1.    In   b2X+i< y " b2\'   ^=0«1»""J' 

p(s)(_2Ul^.R -b ul^b^+e.-a^R,,) 
n 

rsj 

T ^ZX+l' := uswn   ^2\+r6,d\+l'n2\; 

Q2\+l 
2   C0S n,36 
i : zim    log£' (66a) 

8inß8 

Pn} i-f-'RZX-l^hsQ^hZX-e^R2^ 

rv,' 

aZ\ cos nß 

sin ß s 

(64cl) 
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*'  In b2\ <y<b2)L-r ^= l» 2»«"i J» 

p(„8)<-^-   •R2xlSb.Qn8,<l>
2X+''VR21.-ll 

.2X. 
COB nßß 

-* —TT loee' 
Bin p( 

»(s), h2\-r\. »/ 
Pa"' (^- :R2X-2) S bBQn '^ZX-l"6 5aX'R2K.l) 

(66c) 

-2X-1 
2   COB np8 

sin ßc 

(66d) 

To remove these singularities we impose the following conditions 

,,   ,  2N -1 
2X.-2       s (8) 

2      ^ -^   cos nß^-Vsinß^-1 = 0,    \ = 1, 2, . . . J ;      (67a) 

8=0 n=l,3,.. 

,.   ,   2N -1 .   . 
2X-J        s ^(s) 

.2X / ,    nZ\ 
^   cos nß^/sin ß^  = 0,    X. = 1, 2, . ..  J. (67b) 

s=0 n=l,3,. . 

By making use of the  conditions (65) and (67) we may introduce in (63) 

the following substitutions: 

L b \| (f)
2-l]7   (f)2-l by     {[f -   J(f)Z-l]n-l}/|iI?^. 

in b2\+l <y^h2\'   ^ = 0. i" • • J . 

n    (E- 'R2X+l,   by      n        (F" ' ^X+l' 
s s 

ß2U2 0 fl2Ul 
? prs cos nB - cos nß 

= "»? Jß2X+l cos 0 - y/bs 
de ' 
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pi,8,(£iwbvp:(°|(f"w 
0^ z\ 

? n 's cos n6- cos nß 

* J 2\-l       cos 6 - y/b       d8 ' 
Ps 8 

<9)<VlaX+l;R2).)   ^   Qn(6)(y'aUrR2x) 

= 11 
0^^+^ 2\+l K8        (b cos 9-a, .Jlcos n6-cos nß        ) 

_i ili !     de . 
ßs       1 + (bscoa e - aui^ur y) 

Q^ly^jR^)   by   Q^^ia^R,,) 

, pKs        (b cos 6 - a. )(cos n9 - cos nß    ) 

^'ßf 1 + (bßco8 6 - ax)(ax - y) 

together with similar substitutions in   b,.  < y < b,.   ,,    X. = 1,  2,  ,,.. J. 

After these substitutions are made, the downwash   w(y)   then becomes 

bounded everywhere over the wing.    There are   2J   conditions of the 

form (67) In total. 

5,    Application of Boundary Condition on the Wing 

The same assumptions for the effect of slipstream rotation as 

stated previously in Section B4 will be retained for the present case of 

multiple jets.    Since   w(y)   is even in   y, the boundary condition need be 

applied for positive   y   only.    Hence if   a{y)   is the local geometrical 

angle of attack at  y   of the   3/4  chord line, then, by the Weissinger 

method, the required boundary condition becomes 
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wJ/j/Vj =  fjiQ(y)   for   b2x+1< y ^ b^,    \ = 0, 1, ..., J ,        (68a) 

(y-axMy-a^) 
Wj. \(y)/Vj = a(y) + T,     for   b2X< y ^ b2\-l ' 

\ = 1, 3,.. ., J.        (68b) 

where   u   is an even function of its argument    and represents the slipstream 

rotation,  the convention for the sign of   w   being already specified in Section B4. 
2J (s) Here we have    2 N     unknown coefficients   Av,    ,.   which must r, s                                                 2n+l s=0 

also obey the   2J   constraints (65) and 2J constraints (6?).     Therefore we 

may choose appropriately   (2N - 4J) points on the   3/4   chord line at which 

we apply condition (68). 
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III.    COMPUTATIONAL RESULTS 

The problem of verifying the theory is two-fold.    First,  an in- 

volved procedure for electronic machine computations must be developed 

to produce numerical results to apply the theory.    Second,  experimental 

data providing spanwise lift distributions for applicable wing configurations 

is required. 

Major strides were taken in the computational programming of 

the theoretical multiple jet relations developed in this paper.    This pro- 

gram was designed for the IBM Type 709 electronic computer, and 

applied at the UCLA facility.    It should be recognized that the mathematical 

formulation and the computing procedure are highly interrelated.    In de- 

veloping the mathematical theory,  the approach and selection of system 

coordinates must be compatible with the available computing techniques. 

However,  all of the computational difficulties cannot initially be foreseen 

and this results in various modifications in the mathematical form of 

presentation during the development of a satisfactory computational 

procedure. 

The mathematical formulation presented in this paper yielded 

slight numerical inconsistencies on several occasions. It is felt, how- 

ever, that the trends exhibited by the computed results are reasonable. 

An improved formulation which shows promise of relieving some of the 

numerical difficulties is presently under investigation. Much of the com- 

putational program utilized in this paper would be applicable to the new 

formulation. 

Suitable experimental data for verification of the theory is sadly 

lacking.    In September of 1959,  NASA (Ames Research Center,  Moffett 
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Field,  Calif.) published an account of force measurements of a multi-jet 

configuration      ,    Limited spanwise measurements were made during 

the test,  the data for which was not published in their report.    These 

Ames spanwise measurements were obtained upon request but were not 

suitable for correlation with the theory.    Nevertheless, the basic geometry 

of their model was employed in an example computation based on the 

present theory. 

The Ames test was not primarily concerned with spanwise loading 

and thus only a limited number of spanwise measurements were taken. 

The propeller slipstream velocity over the wing was also not measured. 

The effect of the fuselage,  engine nacelles, and asymmetric loading 

between the right and left wing panels (spanwise measurements were made 

on the left wing panel only) also invalidate any spanwise comparison with 

the theory.    Also integration of the Ames spanwise lift data did not agree 

with their total lift measurements for reasons enumerated above. 

Fig, 4 presents theoretical curves for the spanwise lift distribution 

of the selected wing-jet arrangement (similar to Ames configuration).    The 

aspect ratio is 10 and the taper ratio is 0, 5,    The angle of attack is 6    at 

the root chord and   0    at the tip.    The spanwise location of the jets (pro- 

pellers) is shown on the sketch at the top of the figure.    The contribution 

of the Bessel function terms for this computation was found to be small and 

was accordingly disregarded. 

The most significant trend observed in the theoretical curves is 

the increase in the local lift coefficient near the wing mid-span.    This 

result is of primary importance for structural wing design. 

The curves also show that lift is carried across the narrow strip 
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between closely spaced jets.    Also,  when the jets are close together, 

their effects combine to produce a single peak.    Obviously, if the jets 

are a sizeable distance apart,  two distinct peaks will appear. 

The majdmum local lift coefficient occurs near the jet closest 

to the mid-span.     This is reasonable since the local lift of the wing 

without jets increases toward the center.    The washout twist distribution 

also amplifies this effect.    The curves also show a significantly higher 

local lift in the region of the outer jet,  particularly for the higher jet 

strengths (lower   \i   values). 

Significantly, there is only one peak in each of the curves and 

this peak shifts towards the wing mid-span for high   |JL   values.    This is 

explained in terms of the relative strength of the wing and jet,  i. e., the 

wing alone has its maximum local lift (peak) at the mid-span while the 

jet creates a peak at the jet center.    Thus,  the jet tends to pull the peak 

toward its center while the wing tends to pull the peak toward the wing 

centerline,  resulting in a peak in between.    Logically,  this peak shifts 

toward the wing centerline for weak jets (high   \i   values). 
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IV.    CONCLUSIONS 

Lifting surface theory has been generalized to establish a foundation 

from which many problems concerned with the non-uniform aerodynamics 

of wing-jet interaction may be solved.    This generalization has been applied 

to the case of a wing extending through multiple jets. 

The multiple jet formulation was programmed on the IBM 709 

electronic computer.  Due to some slight numerical inconsistencies an improved 

formulation is presently under investigation.    However,  the trends indi- 

cated by the present formulation are considered to be valid. 

The spanwise lift distribution of a wing extending through four (4) 

jets was computed (Fig. 4),    A large increase in lift inboard and within 

the jets (propellers) was obtained with strong jets (low   \x   values).    Sig- 

nificant increases in lift outboard of the jets are also apparent. 

These results provide a basis for optimizing multi-jet wing- 

propeller configurations,   for example by determining the lift distribution 

of a series of wings extending through a systematic family of multiple jet 

arrangements.    As demonstrated in Ref,   2 the optimum planform for a 

wing extending through a single jet is finite and :   similar result is antici- 

pated for multiple jets. 

The large lift magnification noted above resulting from the wing- 

propeller interaction has wide applicability in the area of V/STOL aircraft, 

particularly in the potential of large improvements in STOL capabilities. 

53 



V.    RECOMMENDATIONS 

Analytical solutions to the remaining two phases of the four phase 

fundamental program outlined in the Foreword are under way at the present 

time.    With the generalization of the lifting surface theory presented in 

this report,  the analytical solution of many secondary problems associated 

with the aerodynamics of wing-propeller interaction can readily be solved. 

It is recommended that the analytical program be expanded to 

encompass further secondary factors so that Rethorst's basic solution 

and the generalization of this lifting surface theory presented in this 

report are fully exploited. 

The most pressing immediate concern is the need for suitable 

multi-jet experimental data for correlation with the theory,  and the need 

for a computational program of sufficient scope to delineate optimum 

configurations and gain an insight into all the ramifications of the analyses. 

It is recommended that an intensive experimental investigation 

of spanwise lift distributions for wings extending through multiple jets 

be conducted.    The experimental program should encompass all the 

configurations such as the highly cambered wing,  tut wing,  etc, ,  con- 

sidered in the complete analytical program as outlined in the Foreword, 

It is also recommended that the electronic computing program be 

greatly expanded to fully utilize the analytical results.    It is emphasized 

that the computational program must proceed concurrently with the 

analytical development since the mathematical formulation must be com- 

patible with computational programming techniques. 
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